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The quantum fluctuations of the stress tensor of a quantum field are discussed, as are the
resulting space–time metric fluctuations. Passive quantum gravity is an approximation
in which gravity is not directly quantized, but fluctuations of the space–time geometry
are driven by stress tensor fluctuations. We discuss a decomposition of the stress tensor
correlation function into three parts, and consider the physical implications of each part.
The operational significance of metric fluctuations and the possible limits of validity of
semiclassical gravity are discussed.
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1. INTRODUCTION

The essential divide between classical gravity and the various quantum ver-
sions of gravity theory is crossed when the space–time geometry ceases to be fixed,
but rather undergoes fluctuations. In a complete theory of quantum gravity, one
expects these fluctuations to arise both from the quantum nature of gravity itself
and from the quantum fluctuations of matter fields which act as the source of grav-
ity. The former are “active” (or spontaneous) fluctuations, whereas the latter are
“passive” (or induced) fluctuations. A complete description of active space–time
metric fluctuations would require a full quantum theory of gravity. However, it
is possible to use linearized quantum gravity to describe a variety of nontrivial
phenomena, including quantum fluctuations of the lightcone (Ford, 1995). In this
paper, we will focus upon the passive metric fluctuations. Thus the gravitational
field will not be quantized, but nonetheless will undergo quantum fluctuations
driven by matter fields. This is what we mean by the phrase “passive quantum
gravity.”
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The key to understanding passive quantum gravity is an analysis of the fluc-
tuations of the stress tensor of a quantized field, which will be the principle topic
of this paper. Most of our discussion will deal with quantum fields on an approxi-
mately flat background. Fluctuations of the quantum stress tensor were discussed
in literature (del Campo and Ford, 1988; Ford, 1982; Kuo and Ford, 1993; Wu and
Ford, 1999), using an approach based on normal ordering, which will be discussed
in more detail below. Other authors (Calzettaet al., 1997; Calzetta and Hu, 1993,
1995; Martin and Verdaguer, 1999) have discussed stress tensor fluctuations in the
context of cosmology.

In this paper, we will discuss a useful decomposition of the product of stress
tensor operators into three terms, a fully normal ordered term, a cross term, and
a vacuum term. The possible physical implications of each of these terms will
be considered in succession. In particular, we will discuss how the cross term is
responsible for the quantum fluctuations of radiation pressure when a laser beam
impinges upon a mirror, a potentially observable effect. We will also present some
new results concerning the pure vacuum term. We calculate both the stress tensor
correlation function and the resulting metric tensor correlation function in the
Minkowski vacuum state, and show that the latter quantity can be expressed as
total derivatives of a scalar function. We then discuss the operational meaning of
metric fluctuations as the Brownian motion of test particles. We conclude with
some remarks on the likely range of validity of semiclassical gravity in which
metric fluctuations are ignored.

2. THE STRESS TENSOR CORRELATION FUNCTION

The basic object of interest is the quantum stress tensor operator,Tµν(x).
However, this object is defined only after a renormalization. That is, the formal
expectation value ofTµν(x) in any quantum state is divergent. Fortunately, the
divergence is a c-number, so the renormalization is state-independent. The details
of this procedure on a curved background can be rather elaborate, and are discussed
in many references (Birrell and Davies, 1982). For our purposes, it is sufficient
to discuss the quantum stress tensor operator in Minkowski space–time. In this
case, the c-number to be subtracted is simply the expectation value ofTµν(x) in
the Minkowski vacuum state, and the renormalized operator is the normal ordered
operator:

: Tµν(x) := Tµν(x)− 〈Tµν(x)〉0. (1)

Here〈 〉0 denotes the expectation value in the Minkowski vacuum state.
To discuss stress tensor fluctuations, we must be able to define the correlation

function of a pair of renormalized stress tensor operators. If we restrict ourselves
to flat space–time and normal ordered stress tensor operators, then we can define
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the correlation function as

Cµνρσ (x, x′) = 〈: Tµν(x) :: Tρσ (x′) :〉, (2)

where the expectation value is understood to be taken in an arbitrary quantum
state. This correlation function can be decomposed into three parts using Wick’s
theorem. The following identity can be established using this theorem:

: φ1φ2 :: φ3φ4 : = : φ1φ2φ3φ4 : + : φ1φ3 : 〈φ2φ4〉0+ : φ1φ4 : 〈φ2φ3〉0
+ : φ2φ3 : 〈φ1φ4〉0+ : φ2φ4 : 〈φ1φ3〉0+ 〈φ1φ3〉0〈φ2φ4〉0
+〈φ1φ4〉0〈φ2φ3〉0, (3)

where theφi are free bosonic fields. In the remainder of this paper, we will assume
that our stress tensor operators are those of free bosonic fields, and hence can be
expressed as quadratic forms in theφi .

We can now express the correlation function as

Cµνρσ (x, x′) = Cµνρσ

(N) (x, x′)+ Cµνρσ

(cross)(x, x′)+ Cµνρσ

(V) (x, x′). (4)

Here

Cµνρσ

(N) (x, x′) = 〈: Tµν(x)Tρσ (x′) :〉 (5)

is a fully normal ordered operator, and

Cµνρσ

(V) (x, x′) = 〈: Tµν(x) :: Tρσ (x′) :〉0 (6)

is a pure vacuum term.Cµνρσ

(cross)(x, x′) is a cross term which is expressible as a
sum of products of normal ordered quadratic operators and vacuum expectation
values of quadratic operators, that is, products of the form of the middle four
terms in Eq. (3). The fully normal ordered term is state-dependent and finite in the
coincidence limit,x′ → x. The pure vacuum term is singular in this limit, but is
state-independent. However, the cross term is both state-dependent and singular as
x′ → x. Thus it is not possible to renderCµνρσ (x, x′) finite by a state-independent
subtraction, as it is〈Tµν(x)〉.

As we vary the quantum state to increase the mean energy density〈: ρ :〉 =
〈: Ttt :〉, the fully normal ordered term will scale as〈: ρ :〉2, the cross term as
〈: ρ :〉, and the vacuum term does not change. Thus, in the limit of highly excited
quantum states, the normal ordered term will dominate. However, its contribution
to the stress tensor fluctuations,

Cµνρσ (x, x′)− 〈Tµν(x)〉〈Tρσ (x′)〉 (7)

need not grow any faster than that of the cross term. The physical implications of
each of the three terms will be discussed in turn in the following sections.
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3. THE FULLY NORMAL ORDERED TERM

This term, as noted above, has the feature that it is finite in the coincidence
limit. If this were the only term present in the correlation function, then one could
meaningfully discuss the fluctuations in local stress tensor components, such as
the energy density. This approach was used by Kuo and Ford (1993), where only
the fully normal ordered term was retained, and a dimensionless measure of the
local energy density fluctuations was defined:

1 = 〈: ρ
2 :〉 − 〈: ρ :〉2
〈: ρ2 :〉 . (8)

In the case of a coherent state,1 = 0, so there are no fluctuations in the local
energy density by this measure. However, in nonclassical states, such as a squeezed
vacuum state or a Casimir vacuum state, one can have1 of order unity. Similar
results were found by Phillips and Hu (1997) for the vacuum energy density in
symmetric, curved space–times.

These results can be summarized by saying thatCµνρσ

(N) (x, x′) describes a
fluctuating local energy density. In the classical limit, these fluctuations vanish,
but for nonclassical states, the fluctuations in the local enery density can be at least
as large as the mean energy density.

4. THE CROSS TERM

The simple picture of stress tensor fluctuations based uponCµνρσ

(N) (x, x′) alone
is not complete, in part because of the existence of the cross term,Cµνρσ

(cross)(x, x′).
This term depends upon the quantum state, but is singular whenx′ → x. Thus it is
not possible to define a local quantity analogous to1 which describes the effects
of this term. However, this does not mean that the cross term is devoid of physical
meaning. On the contrary, it is essential for understanding such phenomena as the
quantum fluctuations of radiation pressure.

4.1. Finiteness of Integrals of the Cross Term

The singularity of the cross term need not be a concern if observable quan-
titites, which are space and time integrals, can be defined. The cross term goes
as (x − x′)−4 asx′ → x. At first sight, this is not an integrable singularity. How-
ever, it is in fact possible to define the relevant integrals by an integration by parts
procedure. The basic idea can be illustrated as follows:∫ ∞
−∞

dt1 dt2 f (t1) f (t2)
1

(t1 − t2)4
= − 1

12

∫ ∞
−∞

dt1 dt2 f (t1) f (t2)
∂4

∂t2
1∂t2

2

ln
[
(t1 − t2)2µ2

]
= − 1

12

∫ ∞
−∞

dt1 dt2 f̈ (t1) f̈ (t2) ln
[
(t1 − t2)2µ2

]
, (9)
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whereµ is an arbitrary constant. We have assumed that the functionf (t) vanishes
as|t | → ∞, so the surface terms in the integration by parts vanish. The effect of
this manipulation is to replace the apparently nonintegrable singularity in the first
integral by a mild, integrable singularity in the final integral. This trick has been
employed by various authors under the labels “generalized principal value integra-
tion” (Davieset al., 1990; Davies and Davies, 1989) or “differential regularization”
(Freedmanet al., 1992). Because the quantum state describes a distribution of en-
ergy which is limited in time, the normal ordered factors inCµνρσ

(cross)(x, x′) vanish
in both the past and the future, allowing the surface terms in the integrations to be
dropped.

4.2. Quantum Fluctuations of Radiation Pressure

Classically, a beam of light falling on a mirror exerts a force and the force
can be written as the integral of the Maxwell stress tensor. When we treat this
problem quantum mechanically, then the force undergoes fluctuations. This is a
necessary consequence of the fact that physically realizable quantum states are not
eigenstates of the stress tensor operator. These radiation pressure fluctuations play
an important role in limiting the sensitivity of laser interferometer detectors of
gravitational radiation, as was first analyzed by Caves (1980, 1981). His approach
was based on the statistical fluctuations of photon numbers in a coherent state.
Recently, we (Wu and Ford, 2001) have shown how this phenomenon can be
understood in the context of the quantum stress tensor. Here we will give a brief
summary of this treatment.

Consider a mirror of massm which is oriented perpendicularly to the
x-direction. If the mirror is at rest at timet = 0, then at timet = τ its velocity in
thex-direction is given classically by

v = 1

m

∫ τ

0
dt
∫

A
da Txx, (10)

whereTi j is the Maxwell stress tensor, and
∫

A da denotes an integration over the
surface of the mirror. Here we assume that there is radiation present on one side of
the mirror only. Otherwise, Eq. (10) would involve a difference inTxx across the
mirror. When the radiation field is quantized,Ti j is replaced by the normal ordered
operator :Ti j :, and Eq. (10) becomes a Langevin equation. The dispersion in the
mirror’s velocity becomes

〈1v2〉 = 1

m2

∫ τ

0
dt
∫ τ

0
dt′
∫

A
da
∫

A
da′[〈: Txx(x) :: Txx(x

′) :〉

−〈: Txx(x) :〉〈: Txx(x
′) :〉]. (11)

We now assume that the photons are in a single mode coherent state, so that
the fully normal ordered term gives no contribution. We are also only interested in
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the changes in〈1v2〉 due to the radiation. Thus we can subtract off the Minkowski
vacuum contribution〈1v2〉0 and ignore the pure vacuum term. Now the entire
contribution to the mirror’s velocity fluctuations comes from the cross term:

〈1v2〉 = 1

m2

∫ τ

0
dt
∫ τ

0
dt′
∫

A
da
∫

A
da′〈Txx(x)Txx(x

′)〉cross. (12)

The relevant component of the stress tensor is (Lorentz–Heaviside units are used
here.)

Txx = 1

2

(
E2

y + E2
z + B2

y + B2
z

)
. (13)

We now assume that a linearly polarized plane wave is normally incident and is per-
fectly reflected by the mirror. Take the polarization vector to be in they-direction, so
that Ez = By = 0. At the location of the mirror,Ey = 0, and onlyBz contributes
to the stress tensor. Thus, when we apply Eq. (3) to find〈Txx(x)Txx(x′)〉cross,
the only nonzero quadratic normal-ordered product will be〈: Bz(x)Bz(x′) :〉. The
result is

〈Txx(x)Txx(x
′)〉cross= 〈: Bz(x)Bz(x

′) :〉〈Bz(x)Bz(x
′)〉0. (14)

The vacuum magnetic field two-point function in the presence of a perfectly re-
flecting plane atz= 0 is given by

〈Bz(t1, x1)Bz(t2, x2)〉0 = 〈Bz(t1, x1)Bz(t2, x2)〉E0+ 〈Bz(t1, x1)Bz(t2, x2)〉I 0.

(15)

The first term is the two-point function for empty space,

〈Bz(t1, x1)Bz(t2, x2)〉E0 = (t1− t2)+ |x1− x2|2− 2(z1− z2)2

π2
[
(t1− t2)2− |x1− x2|2

]3 . (16)

The second term is an image term

〈Bz(t1, x1)Bz(t2, x2)〉I 0 = 〈Bz(t1, x1)Bz(t2, x2)〉E0

∣∣
z2→−z2

. (17)

Both terms give equal contributions to the radiation pressure fluctuations on a
mirror located atz= 0.

We can see that the integrand in Eq. (12) is singular when the points (t1, x1)
and (t2, x2) are lightlike separated from one another. However, this singularity can
be handled either by the integration by parts method of the previous subsection, or
equivalently by treating the integrals as containing higher order poles. The result
is (see Wu and Ford (2001) for details)

〈1v2〉 = 4
Aωρ

m2
τ, (18)



P1: GCR

International Journal of Theoretical Physics [ijtp] pp777-ijtp-461698 April 2, 2003 19:59 Style file version May 30th, 2002

Stress Tensor Fluctuations and Passive Quantum Gravity 21

whereA is the illuminated area of the mirror, andρ is the mean energy density in
the laser beam.

As noted above, this result can be found from considerations of photon number
fluctuations. However, in an approach based upon the quantum stress tensor, it
arises solely from the cross term. Laser interferometer detectors of gravity waves
will eventually have to contend with radiation pressure fluctuations as a noise
source. At that point, it is reasonable to expect that these fluctuations will be
observed experimentally for the first time. Such an observation would constitute
experimental proof of the reality of the cross term.

It is of interest to note that if the quantum state is taken to be a photon number
eigenstate, rather than a coherent state, then the fully normal ordered term gives a
nonzero contribution. However, this contribution is such as to exactly cancel the
contribution coming from the cross term, leaving no radiation pressure fluctuations
(Wu and Ford, 2001).

5. THE PURE VACUUM TERM

The piece of the stress tensor correlation function which is the most difficult
to interpret is the pure vacuum part,Cµνρσ

(V) (x, x′). This term is not only highly
divergent in the coincidence limit, but is always present. Any physical effects
which it produces would have to be very small so as not to have already been
observed. In this section, we will show that it can be written as a total derivative.

5.1. Explicit Form for the Electromagnetic (EM) Field

The stress tensor of EM field is

Tµν = F ρ
µ Fνρ − 1

4
gµνFαβFαβ , (19)

whereFαβ = ∂αAβ − ∂β Aα. Expand the stress tensor in terms of the vector poten-
tial Aµ to find

Tµν = ∂µAρ∂νAρ + ∂ρAµ∂ρAν − ∂ρAµ∂νAρ − ∂µAρ∂ρAν

−1

2
gµν(∂αAβ∂

αAβ − ∂αAβ∂
β Aα). (20)

In the Lorentz gauge,

〈Aµ(x)Aν(x′)〉0 = −gµνD(x − x′), (21)

where

D = D(x − x′) = 1

4π2(x − x′)2
(22)
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is the Hadamard (symmetric two-point) function for the massless scalar field. We
can see from Eq. (3) that

〈: Aµ(x)Aν(x) :: Aρx′Aσ (x′) :〉0 = 〈Aµ(x)Aρ(x′)〉0〈Aν(x)Aσ (x′)〉0
+〈Aµ(x)Aσ (x′)〉0〈Aν(x)Aρ(x′)〉0. (23)

We can now combine these various relations to write, after some calculation, an
expression for the vacuum stress tensor correlation function

Cµνσλ

(V) (x, x′) = 4(∂µ∂νD)(∂σ ∂λD)+ 2gµν(∂σ ∂αD)(∂λ∂
αD)

+2gσλ(∂µ∂αD)(∂ν∂
αD)− 2gµσ (∂ν∂αD)(∂λ∂

αD)

−2gνσ (∂µ∂αD)(∂λ∂
αD)− 2gνλ(∂µ∂αD)(∂σ ∂

αD)

−2gµλ(∂ν∂αD)(∂σ ∂
αD)+ (gµσgνλ + gνσgµλ

−gµνgσλ)(∂ρ∂αD)(∂ρ∂αD). (24)

A similar result for the case of the scalar field has been given by Martin and
Verdaguer (see Eq. 3.42 of Martin and Verdaguer, 1999).

5.2. The Metric Fluctuation Correlation Function

We can now use our expression for the stress tensor correlation function to
find the correlation function for the passive metric fluctuations induced by vacuum
fluctuations of the EM field. Lethµν be a classical metric perturbation due to the
stress tensorTµν . Define hµν = hµν − 1

2ηµνh and impose the harmonic gauge
condition, (∂νhµν = 0). Then

hhµν = −16πTµν (25)

in units in whichG = 1, whereG is Newton’s constant. LetGr (x − x′) be the
retarded Green function which satisfies

hGr (x − x′) = δ(x − x′). (26)

If there is no incoming gravitational radiation,hµν(x) is given by

hµν = −16π
∫

d4x1Gr (x − x1)Tµν(x1). (27)

Now let Tµν be the normal-ordered stress operator for the quantized EM
field. Because hereTµ

µ = 0, we havehµν = hµν . The metric fluctuation correlation
function is now

〈hµν(x)hρσ (x′)〉 = (16π )2
∫

d4x1 d4x2Gr (x − x1)Gr (x
′ − x2)Cµνρσ

(V) (x1, x2).

(28)
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We use Eqs. (22) and (24) in the above expression. The result may be written in
terms of derivatives of the quantity

S= ln2[µ2(x − x′)2], (29)

whereµ is an arbitrary constant, using results such as

h
2S= − 32

[(x − x′)2]2
. (30)

Finally we perform a set of integrations by parts and assume that the surface terms
can be ignored. (This assumption needs to be examined more carefully, and is a
current topic of investigation.) More details of the calculation will be given in a
later paper. The final result for the metric correlation function is

〈hµν(x)hσλ(x
′)〉 = − 1

60π2

[
4∂µ∂ν∂σ ∂λS+ 2(gµν∂σ ∂λ + gσλ∂µ∂ν)hS

− 3(gµσ ∂ν∂λ + gµλ∂ν∂σ + gνσ ∂µ∂λ + gνλ∂µ∂σ )hS

+ 3(gµσgνλ + gνσgµλ)h
2S− 2gµνgσλh

2S
]
. (31)

This is a remarkably simple result. It is of special interest to note that the
metric fluctuation correlation function is expressible as the total derivative of a
scalar.

6. OPERATIONAL MEANING OF METRIC FLUCTUATIONS

Fluctuations of the space–time metric ultimately must be recorded by test
particles or waves propagating in the fluctuating geometry. Let us first consider
the use of a classical point test particle. In classical relativity, such a test particle
moves on a geodesic in a fixed classical metric and can serve as giving operational
meaning to the space–time geometry. If we now allow the metric to fluctuate,
the geodesic equation becomes a Langevin equation and the test particles undergo
Brownian motion (Kuo and Ford, 1993). We can express this Langevin equation as

duµ

dτ
= −0µαβuαuβ − γ µαβuαuβ , (32)

whereuµ is the particle’s four-velocity,3µ
αβ is the connection due to the mean met-

ric, andγ µαβ is the linear correction to the connection due to the fluctuations. Thus〈
γ
µ
αβ

〉 = 0. (33)

We may integrate this equation, and then calculate mean squared variations in
the four-velocity in terms of the metric fluctuation correlation function,〈hµν(x)
hρσ (x′)〉. Note that this correlation function is given in passive quantum gravity
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by the generalization of Eq. (28):

〈hµν(x)hρσ (x′)〉 = (16π )2
∫

d4x1 d4x2Gr (x − x1)Gr (x − x2)Cµνρσ (x1, x2),

(34)

where now the full stress tensor correlation functionCµνρσ (x1, x2) appears. This
procedure allows us to calculate such quantities as the mean angular deflection or
the mean time delay or advance due the the fluctuating metric.

Instead of a point particle, one might use classical waves as the probes of the
fluctuating geometry (Hu and Shiokawa, 1998). In this case, one could write down
a correction to a solution of a wave equation due to linearized metric perturbations,
which plays a role analogous to theγ µαβ term in Eq. (32). This term will produce
fluctuations in the wave intensity at a given observation point. There is a need for
more detailed model calculations to better understand both the test particle and the
wave approaches to probing a fluctuating geometry.

7. VALIDITY OF THE SEMICLASSICAL THEORY OF GRAVITY

The semiclassical theory of gravity assumes a fixed space–time metric satis-
fying the semiclassical Einstein equation

Gµν = 8π〈Tµν〉. (35)

This equation is clearly an approximation which must fail at some point. First, it
does not include any effects of the quantization of gravity itself, the active metric
fluctuations. However, even if we restrict ourselves to situations where only the
quantum effects of matter fields are included, Eq. (35) must fail when the passive
metric fluctuations become too large. The question is, how large is too large?

Kuo and Ford (1993) suggested that a possible criterion could be based upon
the quantity1 defined in Eq. (8). If1¿ 1, then the fractional fluctuations in the
local energy density, as measured byCµνρσ (x, x′) are small, and one expects the
resulting metric fluctuations also to be small. However, if1 is not small, then
there are large local energy density fluctuations. Kuo and Ford took

1¿ 1 (36)

as a necessary condition for the validity of the semiclassical theory. This criterion
has been criticized by Phillips and Hu (2000a,b) as being too strong. The latter
authors calculate a quantity analogous to1, but involving smeared fields in the
Minkowski vacuum state. They find that this quantity is of order one. Because one
expects the semiclassical theory to be valid in Minkowski space–time, Phillips and
Hu conclude that Eq. (36) is not a reliable criterion.

We wish to give an assessment both of the Kuo–Ford criterion and of Phillips
and Hu criticism of it. First, it now seems that the Kuo–Ford criterion is at best
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incomplete because it does not address the effects of the cross term. The radiation
pressure fluctuations studied in Section 4.2 show that this term has physical reality
and must contribute to quantum metric fluctuations. The extent of its contribution
is not yet clear. However, in some model radiation pressure calculations for thermal
states (Wu and Ford, 1999) and in the Casimir effect (Wuet al., 2002), the cross term
gives a larger contribution than does the fully normal ordered term. Furthermore,
the real effect of both terms on metric fluctuations is measured by integrals along
the worldlines of test particles rather than by local quantities.

However, the analysis of Phillips and Hu is open to the critcism that the
quantites which they define are not directly observable. The type of averaging
which is involved in a measurement of a fluctuating space–time by test particles is
more of the form of that in Eq. (34) than of smearing field operators themselves.
This leads us to the question of whether the pure vacuum term can have observable
effects in Minkowski space–time. The metric fluctuation correlation function given
in Eq. (31) is the total derivative of a scalar. This suggests that when one uses it to
calculate the Brownian motion of test particles or the fluctuation in amplitude of
a wave, the result can be cast into the form of a surface term by an integration by
parts. However, surface terms can be made to vanish when quantites such as the
wave amplitude are switched on in the past and off in the future. This is by no means
a rigorous argument, but rather a heuristic suggestion that the pure vacuum term
may not produce observable effects. This suggestion needs to be tested by more
detailed analysis. If it is correct, then Phillips and Hu criticism of the Kuo–Ford
criterion is muted.

This would still not necessarily mean that the Kuo–Ford criterion is a good
measure of the effects of metric fluctuations. As noted above, it ignores the effects
of the cross term. More generally, it now seems that any criterion for the validity of
the semiclassical theory must be a nonlocal one. That is, it should involve integrals
upon the worldlines of test particles. It is possible that one can have situations where
there are large fluctuations on short time or distance scales, but which average out
when measurements on longer scales are made.

If the vacuum term is indeed unobservable, then one must study in detail
the combined effects of the normal ordered and the cross term on the Brownian
motion of test particles. This also remains to be done. In the end, the validity of
the semiclassical theory will probably depend on the question which one wishes to
answer. If one is interested only in quantites averaged over scales large compared
to the intrinsic scales defined by the quantum state, then the semiclassical theory
may well give an accurate answer. However, if one poses a question about behavior
on shorter scales, the fluctuations are more likely to be important. A useful analogy
is the fluctuating mirror discussed in Section 4.2. If one is only interested in the
average motion of the mirror, then Newton’s second law with the mean force is
adequate. However, if one needs to know the position of the mirror to high accuracy,
as in a sensitive interferometer, then the force fluctuations cannot be ignored.
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In summary, it seems likely that the validity of the semiclassical approxima-
tion will depend upon several factors. First, it depends upon what question one
is asking. This determines the level at which one decides that the effects of fluc-
tuations around a mean geometry are negligible. Second, it can depend upon the
choice of quantum state. We have seen that the fluctuations of the normal ordered
term are minimized in a coherent state, but can be large in other states. Similarly,
radiation pressure fluctuations are minimized in a photon number eigenstate, but
can be significant in other states. Finally, the magnitude of fluctuation effects de-
pends upon time and length scales, which can in turn depend upon the quantum
state. Measurements which average over larger scales have a greater tendency to
average out the effects of fluctuations than do those made on very short scales.
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